An Investigation of Pollutant Source Strength-Rainfall Relationships at St. Louis

1979 ◽  
Vol 18 (10) ◽  
pp. 1245-1251 ◽  
Author(s):  
Donald F. Gatz
2011 ◽  
Author(s):  
Meriah Arias-Thode ◽  
Stacy Curtis ◽  
Robert George ◽  
Heather Halkola ◽  
Jim Leather ◽  
...  

Author(s):  
Wayan Budiarsa Suyasa ◽  
Sri Kunti Pancadewi G. A ◽  
Iryanti E. Suprihatin ◽  
Dwi Adi Suastuti G. A.

In order to maintain the environmental carrying capacity of coastal tourism, this research was conducted to determine the condition of river water environmental pollution in the Petitenget beach area and pollutant source activities. Determination of water quality is carried out by analyzing the water quality taken at several sampling points in the four rivers that lead to the Petitenget beach. Determined the pollution index value (IP) of the physical chemical and biological pollution parameters. The results showed that the four rivers that flow into the Petitenget Beach area had been contaminated with indications of pH, BOD, COD, ammonia, Coliform and E. coli which exceeded water quality category III class quality (PerGub Bali No 16 Year 2016). The four rivers are included in the criteria of severe contamination. The four rivers have experienced physical damage or structural changes that have very high discharge fluctuations both in quantity and quality. Slimy basic structure, smelly and slum aesthetic waters. While the indication of the impact of pollution is waste water which is directly discharged into the river from hotels, restaurants, homestays, commercial centers and settlements.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3426
Author(s):  
Magdalena Paulina Buras ◽  
Fernando Solano Donado

Harsh pollutants that are illegally disposed in the sewer network may spread beyond the sewer network—e.g., through leakages leading to groundwater reservoirs—and may also impair the correct operation of wastewater treatment plants. Consequently, such pollutants pose serious threats to water bodies, to the natural environment and, therefore, to all life. In this article, we focus on the problem of identifying a wastewater pollutant and localizing its source point in the wastewater network, given a time-series of wastewater measurements collected by sensors positioned across the sewer network. We provide a solution to the problem by solving two linked sub-problems. The first sub-problem concerns the detection and identification of the flowing pollutants in wastewater, i.e., assessing whether a given time-series corresponds to a contamination event and determining what the polluting substance caused it. This problem is solved using random forest classifiers. The second sub-problem relates to the estimation of the distance between the point of measurement and the pollutant source, when considering the outcome of substance identification sub-problem. The XGBoost algorithm is used to predict the distance from the source to the sensor. Both of the models are trained using simulated electrical conductivity and pH measurements of wastewater in sewers of a european city sub-catchment area. Our experiments show that: (a) resulting precision and recall values of the solution to the identification sub-problem can be both as high as 96%, and that (b) the median of the error that is obtained for the estimation of the source location sub-problem can be as low as 6.30 m.


2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 159-166 ◽  
Author(s):  
M. Bäckström ◽  
P.-A. Malmqvist ◽  
M. Viklander

A strategy for sustainable stormwater management is needed. This study has focused on the relative importance of stormwater as a pollutant source in a catchbasin, if Best Management Practices (BMPs) result in pollutant removal or pollutant redistribution, and methods for screening of stormwater strategies. Stormwater is most likely an important pathway for pollutants in a catchbasin perspective. True pollutant removal can only be achieved if the pollutant sources are eliminated. Until that is reached, we should have the best possible control of the pollutant fluxes in the watershed. This study indicates that the search for a sustainable stormwater strategy could be easier to handle if different “screens” could be used. The Swedish environmental objectives, which try to encapsulate all aspects of sustainability, may be used as a foundation for a “sustainability screen”. By using this screen, the “unsustainable” features of different stormwater strategies could be pointed out. A “standards and legislation screen” will be based on the EU Water Framework Directive. As this study has shown, it is doubtful whether the conventional BMPs, such as stormwater ponds and infiltration facilities, produce a sufficient pollutant control.


2021 ◽  
Vol 372 ◽  
pp. 110992
Author(s):  
Neethu Hanna Stephen ◽  
C.P. Reddy ◽  
G. Raghukumar ◽  
K. Dinesh ◽  
K.V. Suresh Kumar

1999 ◽  
Vol 33 (8) ◽  
pp. 1327-1330 ◽  
Author(s):  
Maithili Sharan ◽  
Anil Kumar Yadav ◽  
M.P. Singh ◽  
Suman Gupta

Sign in / Sign up

Export Citation Format

Share Document